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Abstract—We present a new parallel-in-time method de-
signed to reduce the overall time-to- solution of a patient-
specific cardiovascular flow simulation. Using a modified
parareal algorithm, our approach extends strong scalability
beyond spatial parallelism with fully controllable accuracy and
no decrease in stability. We discuss the coupling of spatial and
temporal domain decompositions used in our implementation,
and showcase the use of the method on a study of blood flow
through the aorta. We observe an additional 40% reduction in
overall wall clock time with no significant loss of accuracy, in
agreement with a predictive performance model.
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I. INTRODUCTION

Computational fluid dynamic (CFD) simulations of bio-
logical flows are used for identification of regions of the
circulatory system at risk for the development and progres-
sion of heart disease and have helped yield deep insights
into the underlying mechanisms that experimental measure-
ments alone could not have achieved (e.g. [1], [2], [3], [4],
[5]). Because some circulatory phenomenon manifest over
relatively long time scales, reducing the time-to-solution of
these simulations is an important challenge. Reducing the
run time of these simulations is a more challenging problem
than enabling the modeling of larger fluid systems. There
is a large amount of prior art regarding the exploitation of
spatial parallelism that can be leveraged when increasing the
domain size of the simulated fluid that is not available when
extending a simulation in time (c.f. [6], [7], [8], [9], [10]).
For many fluid simulations, the parallel efficiency saturates
as soon as the size of the fluid domain drops below a
certain threshold. After this point, adding additional cores no
longer improves the overall time-to-solution. Decomposing
the problem in the temporal domain as well as the spatial
can assist in overcoming this inherent strong scaling limit
and significantly reduce the wallclock time if sufficient
computational resources are available.

This paper presents a method for reducing the overall
time-to-solution of a patient-specific cardiovascular hemody-
namics simulation that achieves high-accuracy results using

a coupling decomposition process. Unlike previous work,
our approach exploits both temporal and spatial domain de-
composition while maintaining a stable explicit fluid solver.
We present initial performance and error analysis of applying
the method to the computational hemodynamics application,
HARVEY [11]. We will focus on an adaptation of the
parareal algorithm first introduced by Lions et al., which
combines independent coarse and fine resolutions in time to
reduce the wallclock time of real time problems [12]. The
fine representation is more computationally expensive and
is run in parallel on multiple time intervals to refine the
result of that individual interval. The result for the coarse
resolution is calculated serially and used to initialize the fine
representation, which is in turn calculated in parallel. The
coupling of the two iterators provides a predictor-corrector
scheme that iteratively refines the initial values of the fine
solver and completes the refinement (correction step) in
parallel. The algorithm consists of a series of these iterations
that reach completion when the results converge within a set
tolerance.

One of the main contributions in this paper is the devel-
opment of a multilevel spatio-temporal coupling (MSTC)
that enforces a hierarchical decomposition of the default
communicator and allows seamless communication between
the spatial and temporal decompositions. Introducing such a
scheme into a lattice Boltzmann code such as HARVEY
requires computational and algorithmic developments to
address challenges related to the accuracy, scalability, and
stability of coupling these two fluid representations. We
demonstrate the ability of our method to not only efficiently
produces accurate results, but to recover time-dependent
phenomena like the pulsatile flow imposed by the beating
of the heart. Using 65,536 cores of the IBM Blue Gene/Q
supercomputer, we show a strong correlation between the
predicted and observed parallel speedup and achieve a 40%
reduction in runtime as compared to the optimized spatial
scaling result.
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II. RELATED WORK

Parallel-in-time methods have been investigated as ways
to go beyond the strong-scaling limit of many applications.
If the hardware is available, the combination of a coarse
and fine solver can converge and enable a shorter time-to-
solution for models of interest. The parareal algorithm was
first proposed in 2001 [12] and solidified in the predictor-
corrector format shortly after (e.g. [13], [14]). It converges
with the same accuracy as would be achieved with the
expensive or fine iterator. Recently, alternate parallel-in-time
methods have been propose such as the parallel implicit
time-integration algorithms (PITA) in which parallelizes the
time-loop of a time-dependent PDE solver without impacting
the serial compo (c.f. [15],[16]). Other studies use intertwin-
ing the iterations of parareal with the spectral deferred cor-
rections, the Parallel Full Approximation Scheme in Space
and Time (PFASST) ([17], [18]). Speck et al. demonstrated
a speedup of 8× in addition to the spatial speedup on up to
294,912 cores [19].

In this paper, we focus on adapting the parareal algorithm
to enable space-time parallel simulation of computational
fluid dynamics (CFD). Previous work has shown the po-
tential for such algorithms in CFD applications like in
recovering time dependent behavior such as the development
of turbulent flow [20], however, most of the literature em-
phasizes the algorithmic aspects of the time-parallel schemes
and there are only a few examples of studies into the
efficiency of spatio-temporal coupling. There has been some
research into the use of the parareal algorithm combined
with spatial decomposition for a Navier-Stokes solver on up
to 2,048 cores modeling flow passed a cylinder [21], but
there are no studies that we are aware of investigating the
coupling of spatial and temporal parallelism at larger scales
for CFD for complex flow in a real 3 dimensional problem.

Here to model patient specific cardiovascular hemody-
namics, we employ the lattice Boltzmann method (LBM),
which we will discuss in the following section.

III. THE LATTICE BOLTZMANN METHOD

Heart disease is still one of the leading causes of death in
the western world. In 50% of these cases, sudden cardiac
death is the first manifestation of the disease [22]. Over
the last few decades, physicians have linked key properties
to the likely development and progression of heart disease
but finding methods to identify and track these quantities
for individual patients remains an outstanding question.
There is a growing literature base of studies of modeling
hemodynamic flows in patient-specific arterial geometries
(c.f. [3], [6]); however, the need to model both a large fluid
system and a long time domain poses significant challenges.

Our approach is based an algorithm that can efficiently
model flow through complex geometries such as those found
in the coronary arteries or the aorta. In order to capture
the flow patterns accurately and efficiently, it is necessary

to use a method that handles complex boundaries well. To
this end, we use an alternative to the traditional Navier-
Stokes equations, the lattice Boltzmann method (LBM)
([23], [24]). The LBM is a low-Mach, weakly compressible
solver that recovers hydrodynamic behavior in the limit of
small Knudsen numbers. A key advantage is the use of
simplified kinetic models that macroscopic quantities like
shear stress and pressure can be calculated without the need
of body-fitted grid or an expensive Poisson solver. Such
explicit finite difference methods are natural to parallelize
and easy to implement at the tradeoff of small time steps
and use of a high resolution discrete grid. The high level of
scalability possible on massively parallel systems with the
LBM (e.g. [7], [25], [26], [27]) makes it a strong option
for large patient-specific blood flow simulations. Relying on
such an explicit solver enables a the implementation of a
spatio-temporal decomposition scheme as will be discussed
in later sections.

The LB formalism comes from kinetic theory and is
a minimal form of the Boltzmann equation based on the
collective dynamics of fictitious particles that represent a
local ensemble of molecules moving between the points
of a regular Cartesian lattice. The fundamental quantity is
the particle distribution function, denoted fi(~x, t), which
represents the probability of finding particles traveling with
velocity ξ at lattice node x and at time t. The velocity space
is discretized and the fluid dynamics are resolved through
the evolution of fi(~x, t) with time as:

fi(~x+ ~ci∆t, t+ ∆t) = fi(~x, t)− ω∆t[fi(~x, t)− feqi (~x, t)]
(1)

where feqi (~x, t) is the equilibrium distribution and ω is the
dimensionless relaxation parameter (related to the frequency
of particle collisions) [24]. In this work, we use the 19-speed
cubic D3Q19 lattice connecting each lattice point to its first
and second neighbors [28]. There are two key components
to the algorithm: advection and collision. The advection step
propagates the fluid particles along the discretized velocity
paths defined by the lattice.

Collisions are calculated via a relaxation toward local
equilibrium, as illustrated in the right hand side of Eq.(1).
We use the Bhatnagar-Gross-Krook (BGK) collision op-
erator with a single relaxation time scale [29]. The local
equilibrium is the result of a second-order expansion in the
fluid velocity of a local Maxwellian with speed ~u and is
defined by:

feqi = wiρ

[
1 +

~ci · ~u
c2s

+
1

2

(
(~ci · ~u)2

(c2s)2
− u2

c2s

)]
(2)

where rho denotes the density, ~u the average fluid speed,
cs the speed of sound in the lattice, and wi the weights
attributed to each discretized velocity as determined by the
lattice structure. A no-slip boundary condition is enforced
at the walls through a full bounce back scheme.



While all of the key data such as density, velocity, and
pressure can be calculated based only on data from nearest
neighbors, one drawback is that the LBM requires many
small time steps as limited by CFL-type conditions. These
time steps, however, are extremely efficient and make the
method amenable for parallel implementations [11].
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Figure 1. Speedup of LBM simulations using HARVEY for a range of fluid
system sizes on up to 65,536 cores of the IBM Blue Gene/Q supercomputer.

A. Spatial Scaling Limit

While the LBM has been shown to scale with high effi-
ciency up to 294,912 cores [7], there is a limit to the strong
scaling potential when using only spatial decomposition.
As more cores are used, fewer and fewer fluid nodes are
allocated per code. As this ratio diminishes, the cost of the
internode communication starts to overwhelm the runtime
and reduce the scaling efficiency. In this work, we employed
an even spatial decomposition in which the bounding box of
the fluid was broken up into small cubes of equal sizes by
evenly splitting each dimension. Fig. 1 shows the speedup
achieved on up to 65,636 cores of the IBM Blue Gene/Q
supercomputer at Livermore National Laboratory for fluid
systems ranging in size from 5-100 million fluid nodes. As
shown, for fixed-size fluid systems, beyond a certain point,
adding more cores has no benefit and can actually slow
down the simulation. As the number of fluid nodes per core
drops below 5000, the time spent in communication starts
to overwhelm the computation resulting in lower overall
speedup. Fig. 2 highlights this drop-off showing a decrease
in parallel efficiency for three different LBM codes. All of
the scaling studies were completed on IBM Blue Gene/P
supercomputers. The data for the second two applications
were obtained from [7] and [9] respectively. While the
second two codes included red blood cell modeling as well
as the CFD component, all three demonstrate the same
overall decline in efficiency corresponding to the number
of fluid nodes per core. This is the intrinsic spatial scaling

limit and will serve as the baseline for our parallel spatio-
temporal simulations.
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Figure 2. Parallel efficiency in terms of cores per fluid node for three
different lattice Boltzmann codes. HARVEY is the application presented
here. The other two codes include red blood models and the scaling studies
were also completed on IBM Blue Gene/P supercomputers (c.f. [7], [9]).

IV. PARAREAL ALGORITHM

To achieve temporal decomposition, the entire time in-
terval to be covered by the simulation is divided into N
separate intervals of equal size, [tn−1, tn], n = 1 . . . N ,
with n referring to the nth time step. If there is no spatial
parallelization, N is set to the number of cores in the
system. An iteratively refined estimation of the result for
each interval is calculated, denoted UK

n+1 are calculated
where K is the parareal iteration number. For each parareal
iteration, K, U0

n is initialized through the serial application
of the coarse solver for the full time domain, 0 . . . , tN . For
each K > 0, the initial estimation, U0

n, for the time interval
handled be each processor is refined by simultaneously
running the fine solver for each time interval. A serial
correction step is applied by calculating

UK+1
n+1 = G(tn+1, tn, U

K+1
n )+F(tn+1, tn, U

K
n )−G(tn+1, tn, U

K
n )

(3)
and propagating the result to the next processor in line.

Note that the second and third terms on the right-hand side of
this expression have been obtained in previous iterations and
steps. Convergence is checked through the condition | UK

n −
UK−1
n |< ε where ε is the predetermined tolerance value.

If the difference between the solutions for two successive
parareal K iterations is smaller than ε for all time intervals,
the parareal cycle completes ([30], [31].

We use a pipelined approach in which the fine solver
begins as soon as the coarse approximation is available for
the time interval to be calculated by each core, instead of
waiting for all of the cores in the individual communicator to
complete the G calculation [17], [32]. This ensures that each
step is completed as quickly as possible and further reduces



the time-to-solution by removing the need for processors to
remain idle while waiting for all of the other processors to
finish calculating G. It should be noted that this scheme is
only advantageous when convergence occurs faster than a
serial run of the fine iterator would take [21].

V. MULTILEVEL SPATIO-TEMPORAL COUPLING

To optimally use the available hardware of massively
parallel supercomputers and ultimately minimize the runtime
of the applications in question, we posit that leveraging both
spatial and temporal domain decomposition is needed for
fixed-size problems. We introduce a general approach for
coupling these decomposition strategies through a multi-
level spatio-temporal coupling (MSTC) scheme. This is
similar to communicator breakdown introduced by Grinberg
et al. in [8] to enable the coupling between physical models.
The key advantage of the MSTC architecture is the hierarchi-
cal decomposition of the default World communicator into
sub-communicators to enable efficient coupling of parallel
decomposition in both time and space. This decomposition
is handled by splitting the World communicator into N
different sub communicators to handle the different time
intervals of equal size. This is handled in a topology aware
manner assigning cores that are physically near each other
to the same Tier 2 (T2) group of cores. If no temporal
decomposition is being used, all cores are assigned to the
same T2 group. These groups are further subdivided through
spatial decomposition strategies defining Tier 3, T3, non-
overlapping groups. The core kernel being modeled in this
framework would be solved within T3 groups.

Figure 3. Multi-level Spatio-Temporal Interface breakdown. For Tier 2, the
World communicator is broken into temporal into separate communicators
handling temporal intervals. For Tier 3, each T2 group is broken up
spatially. Coarse and fine solvers run across T3 groups. The red arrows
indicate the tightly coupled message passing with the LBM and the dashed
lines indicate the communication between T2 groups for the one core of
each.

Fig. 3 shows the layout of the MSTC. At T2, new
communicators are introduced splitting the cores into groups
handling each time interval and at T3, these are each
further decomposed to handle specific spatial regions. The

arrows in T3 give a view of the communication patterns
involved with MSTC. The red bi-directional arrows indicate
the tightly coupled interaction between cores in the same
T3 group. This is defined by the kernel in question and
can involve either point-to-point or global communication
across all cores within that group. The kernel here defines
both the coarse and fine solvers that will be executed within
each T3 group. The dashed arrows indicate the point-to-
point communication between T2 groups. These provide
the interaction between temporal intervals in which the
core handling a set spatial region for a time interval will
inform the estimation of the corresponding core that handles
the same spatial region in the next time interval. This is
implemented through point-to-point communication between
cores that have the same T3 ranks. The communication
shown here simply indicates messages for cores of rank 0 in
each, but similar message patterns occur for each rank. The
bulk of the computational time for the simulation actually
occurs within the T3 groups themselves and the message
passing between T2 groups only occurs N times. As the
calculations in each T3 group need to proceed in sync,
blocking receive protocols are leveraged to ensure this. The
pipelined nature of the parareal algorithm though allows
the use of non-blocking sends to minimize communication
overhead.

The T3 groups are implemented as input variables to the
coarse and fine solvers, so one could envision future methods
where we would redefine the communicators throughout the
coarse of the simulation allowing processors that would
remain idle from K=0 time interval T communicators re-
defining the late communicators, joining them and providing
further spatial scaling (up to the limit of coarse).

VI. SPACE-TIME PARALLELISM FOR THE LBM

To define our coarse and fine solvers, we use a two-
level hierarchical refinement of coarse and fine grids in
which a coarse grid covers the entire spatial domain and a
finer grid is superimposed [33]. The coarse iterator models
fluid moving using the coarse grid and similarly the fine
iterator is solved across the fine grid. Unlike traditional mesh
refinement methods, we cover the entire spatial domain with
both the coarse grid and an overlapping superimposed finer
grid. Each iterator models the fluid on its corresponding grid
points separately for the entire spatial domain. To ensure
accuracy and minimize communication overhead, we map
the coarse and fine grid points for the same spatial region
to the same core.

In the LBM, the resolution of the imposed grid spacing
determines the time step size and contributes to the calcu-
lation of the kinematic viscosity of the fluid. The size of a
time step, dt, is related directly to the square of the grid
resolution, dx in the LBM: dt = dx2(ν/νo) where ν is
the viscosity of the fluid in dimensionless lattice Boltzmann
units and νo is the viscosity in terms of physical units



(m2/s). The kinematic viscosity of the fluid is determined
as v = (2/ω − 1)dx · (c/6) where dx is the lattice spacing
and c = dx/dt. It is the impact on these two quantities that
makes the adaptation of parareal for the LBM a challenging
task and not a straightforward implementation. The coupling
for the fluid model on the coarse and fine grid introduces
potential accuracy and stability issues to the method that
need to be addressed.

As in our initial studies applying simply temporal de-
composition to laminar flow in a tube [34], we use a
local second-order refinement solution for coupling between
the grids that relies on different relaxation parameters and
lattice spacing to transition between the grids. The relaxation
parameter ω in Eq. (1) must be rescaled to keep the viscosity
constant across both the coarse and fine grids to ensure a
stable coupling mechanism [33]. We redefine ω as:

ωf =
∆xc
∆xf

(
ωc −

1

2

)
+

1

2
,

where ∆xc and ∆xf are the spatial discretization size
for the coarse and fine grids, respectively, and ωc and ωf

are the corresponding relaxation parameters [35]. This both
addresses the stability concern and imposes an upper bound
on N by requiring ωc to remain close to 2 and ωf to
be greater than 1 [33]. Moreover, the use of this modified
definition of ω for each grid imposes a finite limit on the
disparity between the two iterator’s resolutions.

Building on this we can then adapt the MSTC to this
locally embedded version of the LBM using the following
steps:

0. (K = 0)
Initialize T2 and T3 groups.
Define neighbors between T2 groups.
In each T3 group, initialize the coarse estimation
with serial LBM simulation for the time domain
[tn−1, tn] for the assigned spatial region.
Interpolate to initialize the fine solver.

For (K = K + 1)
1) F is across all T3 groups starting with the initial

values provided by the previous iteration for tn−1

to determine the distribution function at tn for its
respective interval of time and space.

2) In each T3, G is applied. The correction to F is
calculated via Eq. (3).

3) This result is coarsened and propagated between T2
groups to update the initial conditions for G.

4) Convergence is checked: if all intervals of time have
converged, exit the cycle; else, return to Step 1.

The key components to this scheme are the steps required
to link the two different grid resolution levels in the coarsen-
ing and the interpolation steps. On each core, a coarsening
function in which the distribution function at each velocity
for the fine grid is averaged and rescaled is required to

move data between the two grid levels. This operates on
conserved values and introduces no further truncation error.
Similarly, an interpolation method is required to address the
new lattice sites required by the fine iterator. It is in both
of these functions that the rescaling of ω is employed to
maintain a constant kinematic viscosity across the spatio-
temporal decompositions.

To enable the pipeline approach in a spatio-temporal
coupling, we employ non-blocking sending of messages but
have the receivers leverage blocking calls. This prevents
cores from within one sub communicator to get out of
sync. All cores in the sub communicator must handle the
advection and collision within one step sequentially as the
following step relies on data from its nearest neighbors from
the previous step.

It is worth noting that even as larger fluid systems are
modeled, the overhead of the message passing between T2
groups will remain constant. This is due to the fact that
the gain from spatial speedup should always be maximized
before using temporal decomposition. In the case of lattice
Boltzmann, this means that temporal decomposition will
only be employed when the number of fluid nodes per core
drops below the cutoff defined by Fig. 1. Adhering to this
drop off imposes a fundamental limit to the potential number
of fluid nodes to be handles on each core within a T2 group
and subsequently a limit to the potential message size being
sent between K iterations.

A. Speedup Calculation

To obtain a quantitative understanding of the potential
performance improvement to be gained from applying this
spatio-temporal parallelization technique to the LBM, we
must assess the upper bound on the method’s strong scaling
capabilities. Here we assume that the cost of communication
between processors is negligible and that the cores are
homogenous. We define the computational cost for the fine
solver as the cost per time step multiplied by the number of
time steps in one K iteration, denoted by γF . Similarly, we
use γG to indicate the cost of the coarse solver. Following
the procedure outlined by Minion et al., we calculate the
parallel speedup, S, for pipelined parareal calculations using

S =
NγF

NγG +K(γG + γF )
=

1

α+ K
N (α+ 1)

(4)

with N the total number of cores and K the number of
parareal iterations, and we have defined α = γG/γF . This
model was used to demonstrate the speedup at different K
iterations on 32,768 cores in Fig. 7.

Eq. 4 allows the estimation of speedup achieved by simply
the temporal component of the space-time coupling. It can be
taken alongside the speedup from spatial scaling to provide
the predicated total speedup. Extending the model itself to
calculate the combined speedup, we need to define SF and
SG as the parallel speedup of the spatial decomposition on



P cores for each respective iterator. In this instance, the
total number of cores in the system is N ∗ P where each
N time interval is divided into P spatial domains. In the
work presented here, the resolution of the fine grid is twice
that of the coarse grid. This variance corresponds to the fine
iterator having four times as many time steps as the coarse.
This imposes a limit of 32 to the cost ratio of the coarse
to fine iterators. This limit appears in Eq. 5 defining the
speedup from the spatio-temporal scheme.

SMSTC =
1

SF

32SG
+ K

N ( SF

32SG
+ 1)

(5)

In both temporal and spatio-temporal decomposition, the
potential speedup can be optimized through the minimization
of K

N .

VII. NUMERICAL RESULTS

In this section, we present results of experiments on
the accuracy and speedup obtained from the application of
the MSTC method to modeling hemodynamic properties in
a patient suffering from co-arctation of the aorta (CoA).
Personalized computer simulations can provide an insightful
study of the flow under stress conditions that would oth-
erwise require difficult stress tests that have potential side
effects. In the following studies, we use patient data from
an 8-year old female with moderate aortic co-arctation (65%
area reduction). Gadolinium-enhanced MR angiography was
performed using a 1.5-T GE Sigma scanner to obtain the
arterial geometry as shown in Fig 5 (a). We assume rigid
walls and Newtonian flow behavior for the blood, with a
density r = 0.001 gr/mm3 and a dynamic viscosity m =
0.004 gr/mm/sec [36]. All of these studies were completed
using an IBM Blue Gene/Q supercomputer.

The simulation is setup with a 100 µm resolution Carte-
sian grid for the coarse iterator and a 50 µm resolution
grid for the fine iterator. The fine grid corresponds to the
fluid system size matching the red line in Fig. 1 allowing us
to focus on reducing the time-to-solution for simulations in
which adding more cores to a spatial parallelization will no
longer improve the parallel performance. Unless otherwise
noted, the following simulations were conducted on 65,536
cores of the IBM Blue Gene/Q supercomputer. We selected
N = 8 as the number of temporal domains so that we would
be maximizing the strong scaling potential for this fluid
system. By using 8 time intervals, each sub communicator
consists of 8,192 cores. The time duration simulated was
0.7 seconds or the average length of one human heartbeat.
The goal of this work was to shorten the overall time-to-
solution, so we focus on the strong scaling capabilities in
which a fixed system size is used as we increase the number
of processors.

Figure 4. Pulsatile Flow. Test to recover time dependent phenomena
for a system broken into N = 8 temporal domains simulated on 65,536
cores. The blue line shows the magnitude of the velocity over time at point
(16,16,32) after the first K iteration. The green line and red line represent
K = 3 and K = 5 respectively. The black circles indicate the result of
the fine solver which is equivalent to K = 8. The vertical dashed lines
indicate the break point between regions of time handled by each core.
The block arrows indicate the time points at which the accuracy is later
assessed across the aorta in Fig. 5.

A. Time Dependent Phenomena

In order to determine if use of MSTC could accurately
recover time dependent phenomena, we introduced pulsatile
flow via the Zou-He boundary conditions [37]. To this end,
a patient-specific inflow velocity was prescribed at the inlet
and a constant pressure gradient was applied out the outlets.
The inflow velocity was obtained via a 2D, phase-contrast
(PC) MRI sequence with through-plane velocity encoding
[36]. In order to enable continuous flow throughout the
heartbeat, we use a sum of sine functions to the data to
determine the equation of the pulse. The fit procedure was
performed in MATLAB using a non-linear least squares
method and a trust region algorithm [38]. Using a Pearson
correlation, there was a statistically significant agreement
between the phase contrast data and the equation derived
velocity values (r = 0.981, p < 7 ∗ 10−15). Fig. 4 shows
that the spatio-temporal framework in HARVEY starts to
recover the pulsatile behavior with greater accuracy at each
K iteration.The magnitude of the fluid velocity at point
(16,16,32) for a range of K levels of a simulation with
8 temporal domain slices using 65,536 cores is presented.
As the K iteration level increases, the result gets nearer
and nearer to the solution of the full fine solver which is
equivalent to the K = 8 depicted by the black circles. Even
at K = 5, the time dependent behavior is fully recovered,
as shown by the red lines. The dashed black vertical lines
indicate the break point between regions of time handled by
different time intervals or sub communicators.



Figure 5. Accuracy at different K levels. (a) The mesh defining the arterial geometry from patient specific data is shown. The red rectangle depicts the
section across which velocity is assessed. (b) The three vertical rectangles correspond to the time points marked in Fig. 4 and identify the time points that
the error tests were imposed over the coarse of one heartbeat. The relative error in velocity as compared to the solution of the fine iterator, F, is shown at
four different K levels at each time point identified in 4. The error variation across the section is highlighted.
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Figure 6. Accuracy test for a patient model broken into N = 8 temporal
domains simulated on 32,768 cores.

B. Accuracy

Full convergence with machine accuracy to the F solution
defined in Section IV requires K = N iterations when
using N processors. The results presented and discussed in
this section are intended to show that convergence within
a set tolerance can be achieved with fewer K iterations
than the number of processors (K < N ). Fig. 5 shows the
change in accuracy across the slice at the red plane within
a real patient’s arterial geometry as shown in Fig. 5(a). The
relative error in velocity as compared to the solution of the
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Figure 7. Performance tests demonstrating the strong correlation between
the theoretically expected performance and experimental results. The black
line depicts the simulation results and the red circles indicate the theoretical
speedup added from the temporal component as calculated from Eq. (4).

fine iterator, F, is shown at three different time points from
within a heartbeat. The pulsatile nature of the flow causes
a variation in the error. At each K iteration, the overall
accuracy increases. When K > 5, the relative error across
the entire slice is approximately zero. The fact that the
initial time intervals reach convergence first is highlighted
by K = 3 in which the error is greatly reduced for the first
two time points. Of further note, the greatest error is at the
center of the tube. The calculated velocity at the wall of the



tube converges to the result of the fine iterator at a faster rate.
This is significant in selecting the desired K level as it can
depend on the research question and disease targeted. Often
when assessing risk for a disease like atherosclerosis, one
is concerned with the magnitude of the endothelial shear
stress on the wall of the vessel [1]. In this case a lower
K iteration may provide the accuracy desired. Conversely,
when trying to understand the pressure gradient associated
with co-arctation of the aorta, the pressure at the center of
the vessel is equally as significant.

These results are congruent with results found for other
domains. Baffico et al. showed that K = 4 of a domain
broken into six temporal intervals provided accurate results
for a molecular dynamics code [14] and Fisher et al.
demonstrated high accuracy at K = 2 for a Navier-Stokes
simulation with ten temporal intervals [21].

We then assessed the additional speedup provided by our
method above and beyond that achieved by the spatial par-
allelization and investigated how close our implementation
comes to meeting the theoretical performance prescribed by
Eq. (5). Fig. 7 shows the correlation between the theoretical
performance model previously discussed for speedup, Eq.
(4), and the experimental results of the simulation. The
previously mentioned resolutions (∆xf = 50 µm and
∆xc = 100 µm resolution) were used to determine the value
of α and consequently the overall computational costs. Any
change to either grid resolution would impact the associated
speedup that can be achieved.

C. Time-to-Solution

We evaluate the performance of our implementation of
our MSTC scheme with LBM on a 65,536-core system. Our
approach sees a reduction in the time-to-solution at each K
level (Fig. 8). The black line depicts the results from simply
using spatial decomposition while the red and green lines
show the runtime using K = 5 and K = 3 respectively.
While the minimal runtime for the spatial decomposition
is achieved with only 4,096 processors, the spatio-temporal
decomposition extends the scalability limit and provides
even lower runtimes at 65,536 cores. For example, the result
at 65,536 cores for K = 5 demonstrates a 40% reduction in
runtime as compared to the minimal time achieved through
spatial decomposition alone.

Table I shows the relative error in velocity at both the
wall of the vessel and the center. The significance of this
data is that we can more efficiently use available hardware
by combining the use of temporal and spatial scaling. As
the data shows, for all iterations with K ≥ 5, the relative
error is less than 1%.

VIII. CONCLUSIONS

For many fluid problems even beyond the medical ap-
plications discusses in this paper, there is a strong need
to model longer time durations for fixed system sizes. In
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Figure 8. Time-to-solution for different levels of K when using MSTC
as compared to a simulation using only spatial decomposition.

Table I
PERCENT ERROR

K level At Wall At Vessel Center
1 401% 823%
2 56% 225%
3 9% 31%
4 2% 5%
5 <1% <1%
6 <1% <1%
7 <1% <1%
8 <1% <1%

these instances, there is often a fundamental limit to the
benefits that can be obtained through conventional spatial
scaling. Through the careful coupling of temporal with
spatial parallelization, we have shown that we efficiently use
available parallel resources to reduce the time-to-solution
for real problems and real data. As wallclock time plays a
crucial role in the potential impact of these methods, the re-
sults presented above show that spatio-temporal parallelism
is has the potential to extend scaling possibilities beyond
the scaling limit imposed by traditional strong scaling. We
have demonstrated that parallelizing the lattice Boltzmann
method in both time and space is a successful method for
time dependent blood flow in the arterial system. Using
patient specific data reconstructed from Magnetic Resonance
Angiography, we have recovered steady and pulsatile flow
fields within an acceptable accuracy.

We showed that implementing the MSTC method in
HARVEY resulted in a 40% reduction in the overall wall-
clock time for the simulation of a real problem. This
minimization of the overall time-to-solution was achieved
using software approaches that exploited the hardware’s
low latency communication mechanisms and tight, fine-
grained coupling between grid levels. As a result, the
coupling method presented in this paper allows researchers



to overcome the fundamental strong scaling limit imposed
by spatial scaling alone. We believe that use of the MSTC
mechanism will enable simulations of longer physical time
periods in shorter wallclock times, enabling the study of
phenomena outside the reach of traditional CFD methods.
Moreover, the techniques presented in this paper are agnostic
to the scaling limit itself in the sense that they would
continue to add the same speedup factor above the spatial
limit no matter where the spatial limit is place. This is allows
the MSTC scheme to continuously extend the potential of
new developments improving the spatial scaling limit. As
systems with millions of cores become more prevalent, these
methods provide a new way for more codes that traditionally
could not make use of the full system to effectively scale to
large core count and enable science of unprecedented scale.
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